Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.
نویسندگان
چکیده
: In many cases in experimental science, the instrument interface becomes a limiting factor in the efficacy of carrying out unusual experiments or prevents the complete understanding of the acquired data. We have developed an advanced interface for scanning probe microscopy (SPM) that allows intuitive rendering of data sets and natural instrument control, all in real time. The interface, called the nanoManipulator, combines a high-performance graphics engine for real-time data rendering with a haptic interface that places the human operator directly into the feedback loop that controls surface manipulations. Using a hand-held stylus, the operator moves the stylus laterally, directing the movement of the SPM tip across the sample. The haptic interface enables the user to "feel" the surface by forcing the stylus to move up and down in response to the surface topography. In this way the user understands the immediate location of the tip on the sample and can quickly and precisely maneuver nanometer-scale objects. We have applied this interface to studies of the mechanical properties of nanotubes and to substrate-nanotube interactions. The mechanical properties of carbon nanotubes have been demonstrated to be extraordinary. They have an elastic modulus rivaling that of the stiffest material known, diamond, while maintaining a remarkable resistance to fracture. We have used atomic-force microscopy (AFM) to manipulate the nanotubes through a series of configuration that reveal buckling behavior and high-strain resilience. Nanotubes also serve as test objects for nanometer-scale contact mechanics. We have found that nanotubes will roll under certain conditions. This has been determined through changes in the images and through the acquisition of lateral force during manipulation. The lateral force data show periodic stick-slip behavior with a periodicity matching the perimeter of the nanotube.
منابع مشابه
Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the l...
متن کاملMechanical peeling of free-standing single-walled carbon-nanotube bundles.
An in situ electron microscopy study is presented of adhesion interactions between single-walled carbon nanotubes (SWNTs) by mechanically peeling thin free-standing SWNT bundles using in situ nanomanipulation techniques inside a high-resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle ...
متن کاملAb Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملEffective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle
Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness. In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated. First, FEA models are created consisting of CNTs with different shapes of straight and rope-...
متن کاملNano-Silica Sol-Gel and Carbon Nanotube Coupling Effect on the Performance of Cement-Based Materials
Carbon nanotubes (CNTs) have shown promise for improving the mechanical performance of cement composites through crack-bridging and frictional pull-out. The interactive behaviors between CNTs and cement matrix act are crucial in optimizing the reinforcement of CNTs in cement composites. This study investigates the effects of nano-silica (NS) sol-gel on the interactive behaviors of CNTs and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
دوره 4 5 شماره
صفحات -
تاریخ انتشار 1998